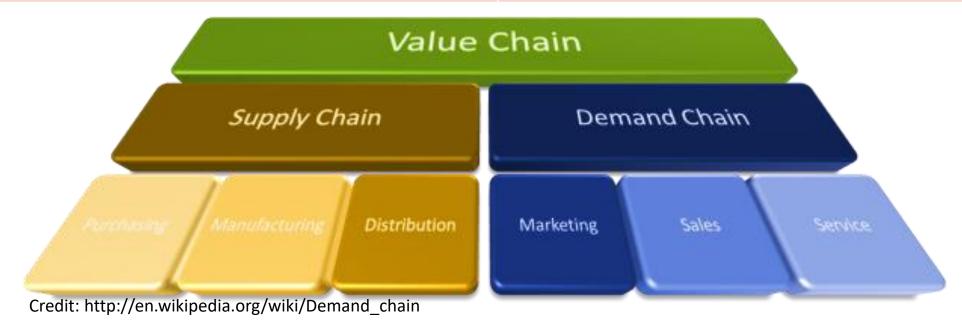
## Dynamic Pricing & Revenue Management in Service Industries


Kannapha Amaruchkul

3<sup>rd</sup> Business Analytics and Data Science Conference Bangkok, Thailand

October 30, 2018

## RM: Complement of SCM

| Revenue Management (RM)                               | Supply Chain Management (SCM)               |
|-------------------------------------------------------|---------------------------------------------|
| RM concerned with <i>demand-management</i> decisions. | SCM concerned with <i>supply</i> decisions. |
| "Interface with the market"                           | Logistics of the firm                       |
| Objective: Maximize total profit                      | Objective: Minimize total cost              |



#### Synonymous names:

Yield management. Pricing and revenue optimization.

Demand-chain management 3













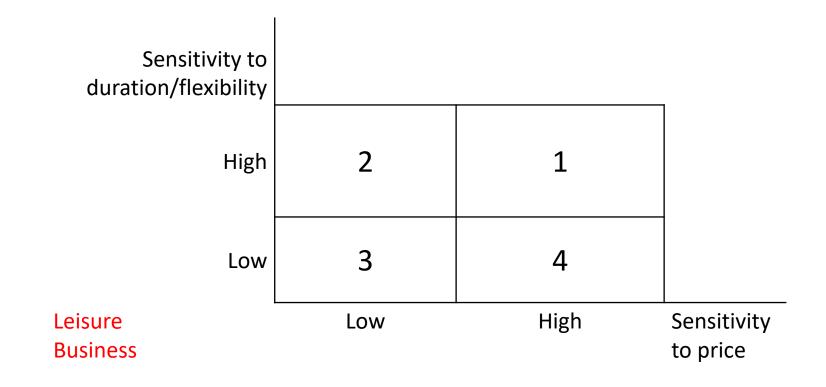






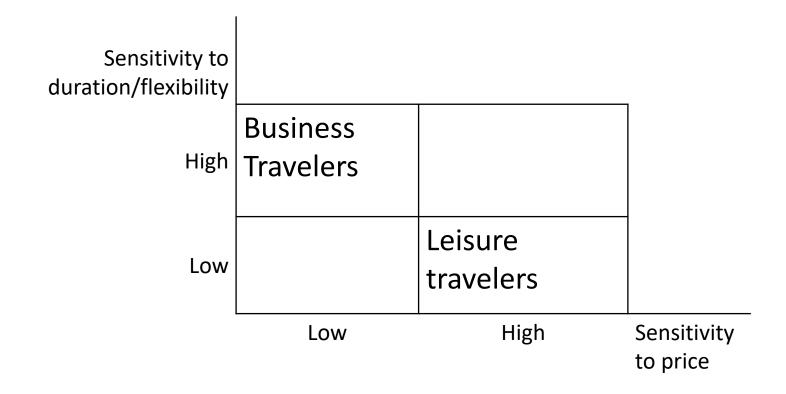






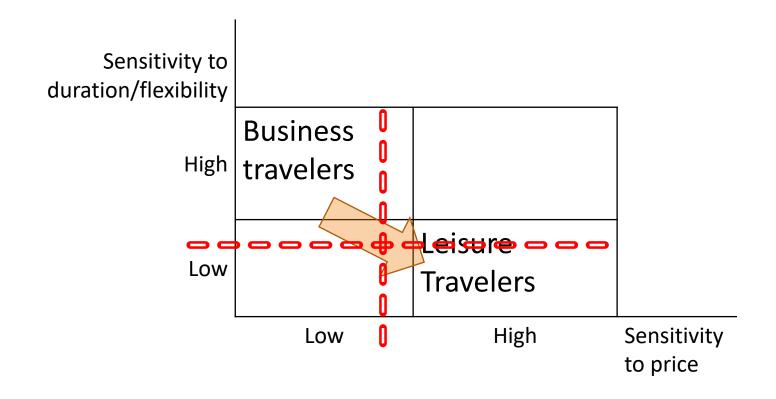




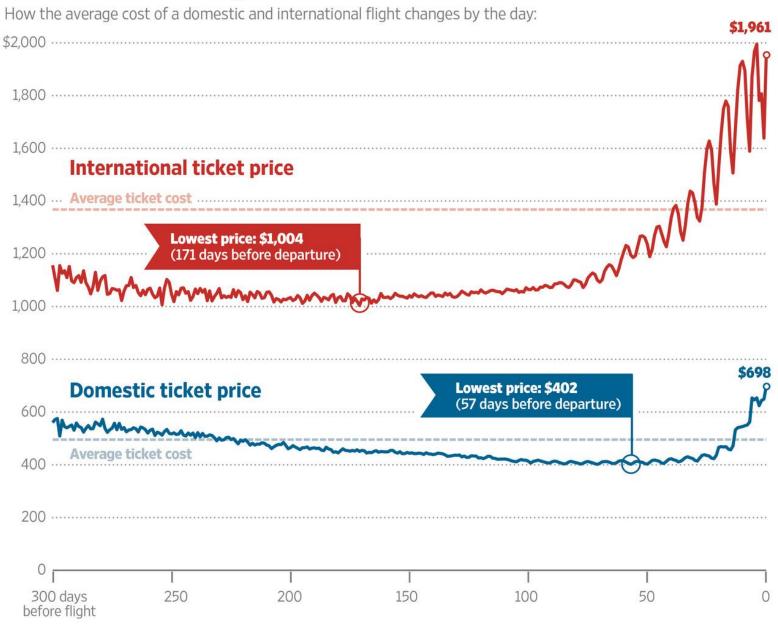

## Market Segmentation in Airline Industry



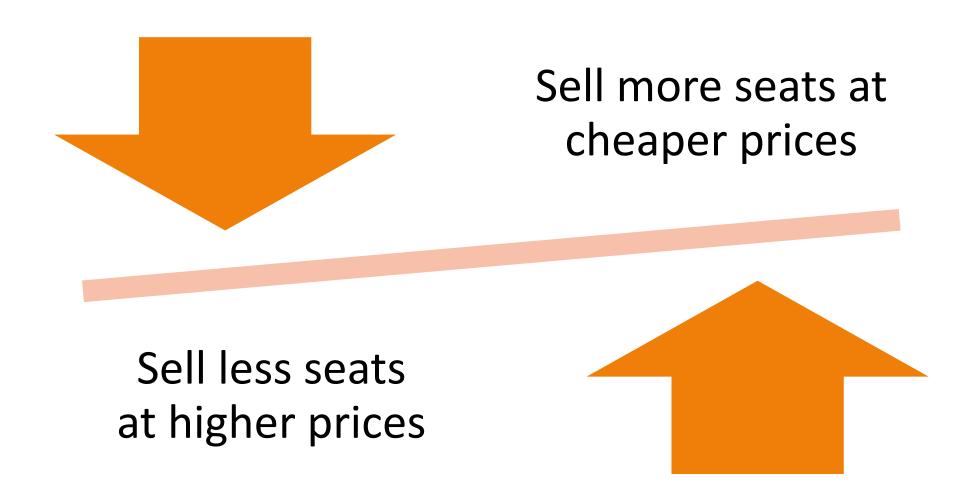

Source: Simchi-Levi, D., & Kaminsky, P., & Simchi-Levi, E. (2007). Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies. Boston: McGraw-Hill.

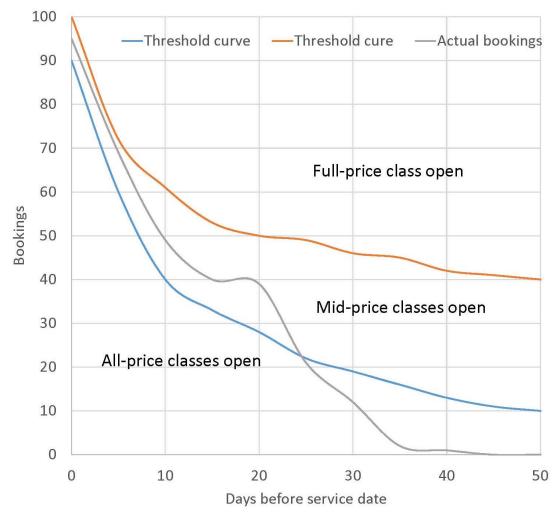
## Market Segmentation in Airline Industry

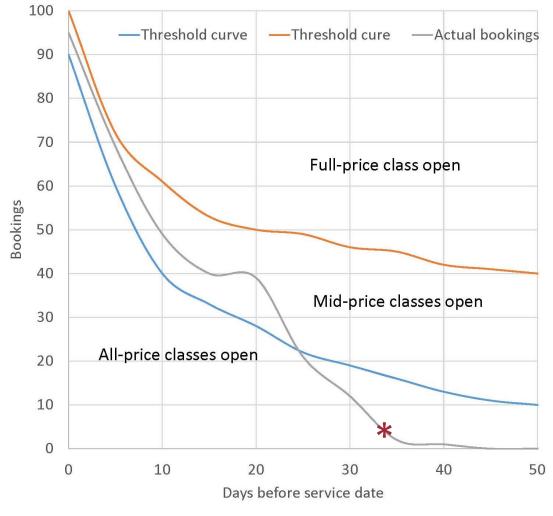


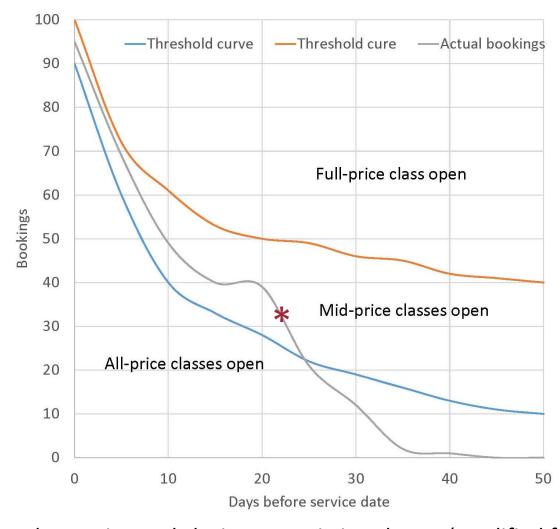

Source: Simchi-Levi, D., & Kaminsky, P., & Simchi-Levi, E. (2007). Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies. Boston: McGraw-Hill.

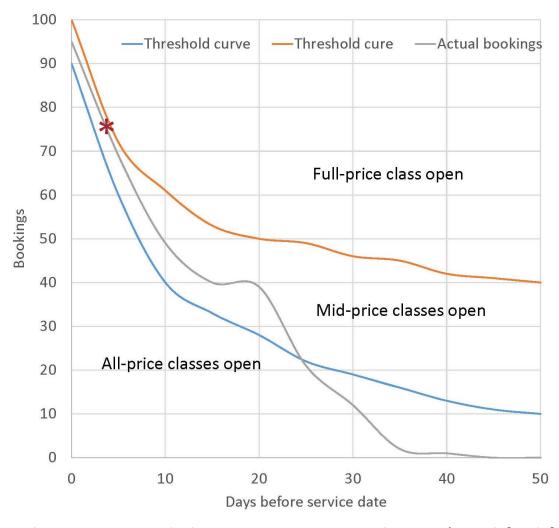
## Market Segmentation in Airline Industry





Source: Simchi-Levi, D., & Kaminsky, P., & Simchi-Levi, E. (2007). Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies. Boston: McGraw-Hill.


#### **How The Prices Change**

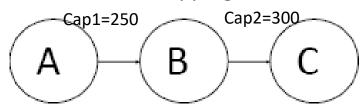




## What is capacity allocation problem?












## Network management

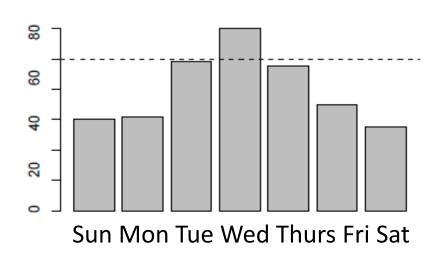
| Industry             | Resource unit      | Multi-resource product |
|----------------------|--------------------|------------------------|
| Passenger<br>airline | Seat on leg        | Multi-leg<br>itinerary |
| Hotel                | Room night         | Multi-night stay       |
| Rental car           | Rental day         | Multi-day rental       |
| Passenger<br>train   | Seat on a leg      | Multi-leg trip         |
| Container shipping   | Cargo space on leg | Multi-leg<br>routing   |

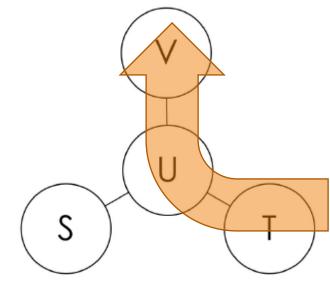
#### Airline. Container shipping



Hotel. Rental car

| Description |                | $a_{i,j}$ | Resource $(i)$ |     |     |     |     |     |     |
|-------------|----------------|-----------|----------------|-----|-----|-----|-----|-----|-----|
| Arrival     | Length of stay | ODF(j)    | Sun            | Mon | Tue | Wed | Thu | Fri | Sat |
| Sun         | 1              | 1         | 1              | 0   | 0   | 0   | 0   | 0   | 0   |
| Sun         | 2              | 2         | 1              | 1   | 0   | 0   | 0   | 0   | 0   |
| Sun         | 3              | 3         | 1              | 1   | 1   | 0   | 0   | 0   | 0   |
| Mon         | 1              | 4         | 0              | 1   | 0   | 0   | 0   | 0   | 0   |
| Mon         | 2              | 5         | 0              | 1   | 1   | 0   | 0   | 0   | 0   |
| Mon         | 3              | 6         | 0              | 1   | 1   | 1   | 0   | 0   | 0   |
| Tue         | 1              | 7         | 0              | 0   | 1   | 0   | 0   | 0   | 0   |
| Tue         | 2              | 8         | 0              | 0   | 1   | 1   | 0   | 0   | 0   |
| Tue         | 3              | 9         | 0              | 0   | 1   | 1   | 1   | 0   | 0   |
| Wed         | 1              | 10        | 0              | 0   | 0   | 1   | 0   | 0   | 0   |
| Wed         | 2              | 11        | 0              | 0   | 0   | 1   | 1   | 0   | 0   |
| Wed         | 3              | 12        | 0              | 0   | 0   | 1   | 1   | 1   | 0   |
| Thu         | 1              | 13        | 0              | 0   | 0   | 0   | 1   | 0   | 0   |
| Thu         | 2              | 14        | 0              | 0   | 0   | 0   | 1   | 1   | 0   |
| Thu         | 3              | 15        | 0              | 0   | 0   | 0   | 1   | 1   | 1   |
| Fri         | 1              | 16        | 0              | 0   | 0   | 0   | 0   | 1   | 0   |
| Fri         | 2              | 17        | 0              | 0   | 0   | 0   | 0   | 1   | 1   |
| Sat         | 1              | 18        | 0              | 0   | 0   | 0   | 0   | 0   | 1   |


## Why network RM difficult?


#### **Hotel RM**

Needs to consider both room rate and length of stay

#### **Airline RM**

Needs to consider both OD and fare (ODF)





| Class | SU     | TU     | UV     | SV     | TV     |
|-------|--------|--------|--------|--------|--------|
|       |        |        |        |        |        |
| 1     | 41,000 | 16,000 | 12,000 | 48,000 | 19,000 |
|       |        |        |        |        |        |
| 2     | 15,000 | 14,000 | 9,700  | 17,000 | 16,000 |
|       |        |        |        |        |        |
| 3     | 9,200  | 13,000 | 6,700  | 8,300  | 8,400  |

## Bid pricing for hotels

|           | June |      |      |       |      |      |      |  |
|-----------|------|------|------|-------|------|------|------|--|
|           | Mon  | Tue  | Wed  | Thurs | Fri  | Sat  | Sun  |  |
|           | 30   | 31   | 1    | 2     | 3    | 4    | 5    |  |
| demand    | 89   | 90   | 113  | 106   | 103  | 66   | 79   |  |
| bid price | 3206 | 3502 | 5824 | 4274  | 3518 | 2065 | 2369 |  |
|           | 6    | 7    | 8    | 9     | 10   | 11   | 12   |  |
| demand    | 87   | 104  | 136  | 116   | 88   | 48   | 48   |  |
| bid price | 3361 | 4634 | 6542 | 5410  | 3637 | 1604 | 1232 |  |
|           | 13   | 14   | 15   | 16    | 17   | 18   | 19   |  |
| demand    | 64   | 88   | 109  | 100   | 90   | 74   | 64   |  |
| bid price | 2067 | 2750 | 4658 | 3803  | 3514 | 2100 | 2070 |  |
|           | 20   | 21   | 22   | 23    | 24   | 25   | 26   |  |
| demand    | 88   | 100  | 157  | 137   | 120  | 93   | 88   |  |
| bid price | 3388 | 4944 | 7596 | 6549  | 4643 | 3824 | 3233 |  |
|           | 27   | 28   | 29   | 30    | 1    | 2    | 3    |  |
| demand    | 85   | 91   | 110  | 99    | 80   | 58   | 72   |  |
| bid price | 3200 | 3555 | 5916 | 3843  | 2996 | 2050 | 2382 |  |

## Bid price calculation

Deterministic linear programming

For each resource i bid price = shadow price

```
\sum_{i=1}^{n} p_i x_j
Maximize
Subject to:
\sum_{j=1}^{n} a_{ij} x_j \le b_i
                           for each i = 1, 2, ..., m
0 \le x_i \le d_i
                           for each j = 1, 2, ..., n
```

**B2B Pricing Analytics** 

#### Bid price calculation

• Deterministic linear programming

Randomized linear programming

Probabilistic nonlinear programming

$$\max \sum_{j=1}^{n} p_{j} x_{j}$$

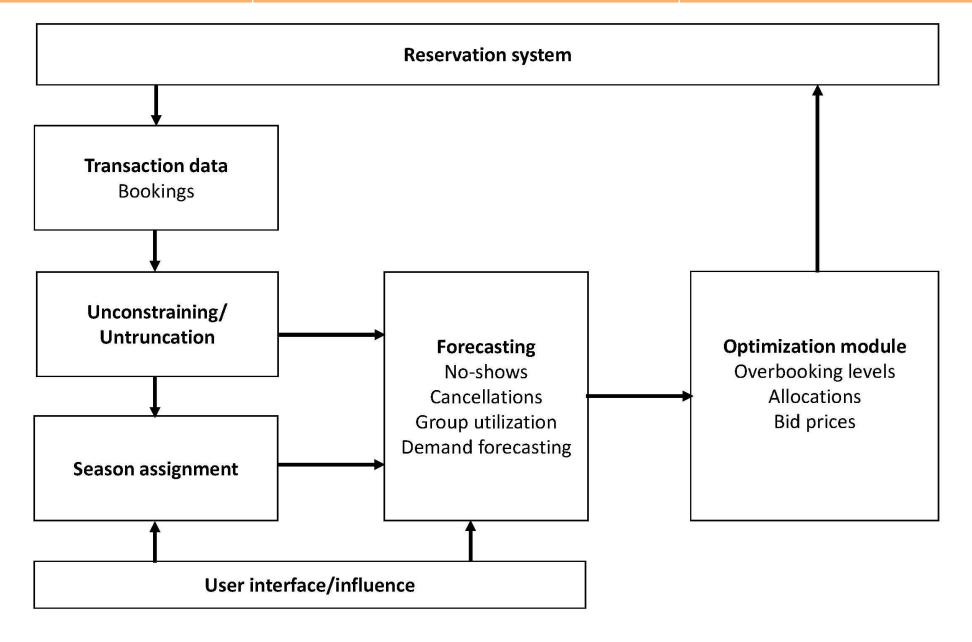
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for all } i = 1, 2, \dots, m$$

$$0 \leq x_{j} \leq d_{j} \quad \text{for all } j = 1, 2, \dots, n$$

$$(D_1^{(1)}, D_2^{(1)}, \dots, D_n^{(1)})$$

$$(D_1^{(2)}, D_2^{(2)}, \dots, D_n^{(2)})$$

$$\dots$$


$$(D_1^{(\ell)}, D_2^{(\ell)}, \dots, D_n^{(\ell)}),$$

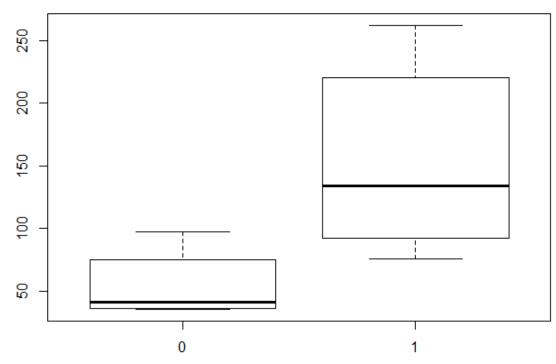
$$(D_1^{(\ell)}, D_2^{(\ell)}, \dots, D_n^{(\ell)}),$$

$$\max \sum_{j=1}^{n} p_{j} E[\min(X_{j}, y_{j})]$$

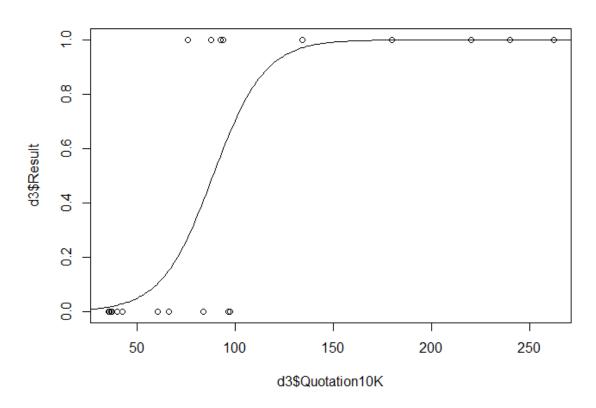
$$\sum_{j=1}^{n} a_{ij} y_{j} \leq b_{i} \qquad \text{for all } i = 1, 2, ..., m$$

$$y_{j} \geq 0 \qquad \text{for all } j = 1, 2, ..., n$$




## B2B pricing analytics

B2C B2B


## Historical record: Palletizer bidding result

0 = Win 1= Lose



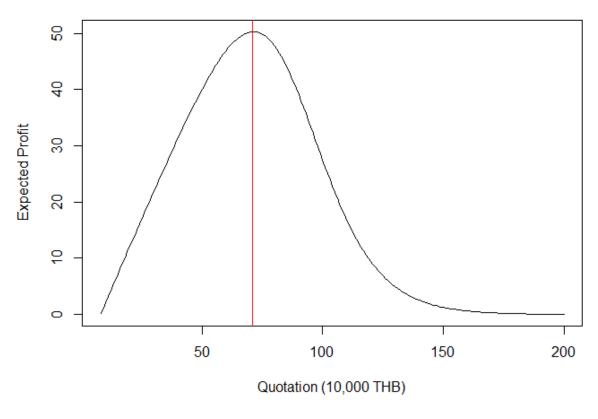


## Logistic regression (binary classification)



Let 
$$p = P(Y = 1)$$
 prob of losing.

$$logit(p) = log\left(\frac{p}{1-p}\right) = \theta_0 + \theta_1 x$$
$$p = \frac{1}{1 + exp(-(\theta_0 + \theta_1 x))}$$


where x is the quotation (in 10K).

```
> exp(mylogit3$coefficient[2])
Ouotation10K
    1.079593
```

> mylogit3 <- glm(Result~Quotation10K, data=d3, family = "binomial") Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
           -6.79908 3.51682 -1.933 0.0532.
(Intercept)
Quotation10K 0.07658
                      0.04090 1.873 0.0611 .
```

#### Optimal bid price

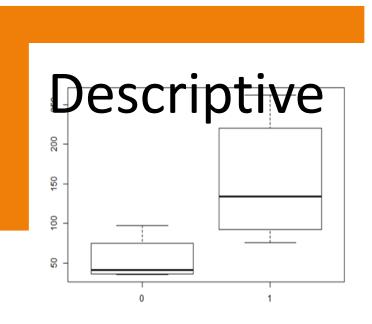


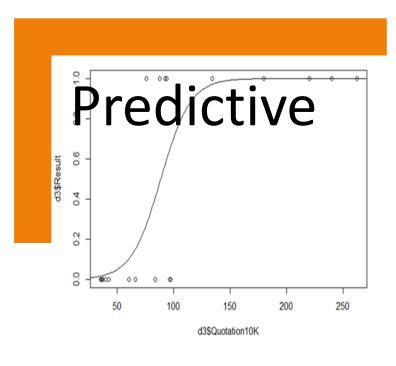
#### Input

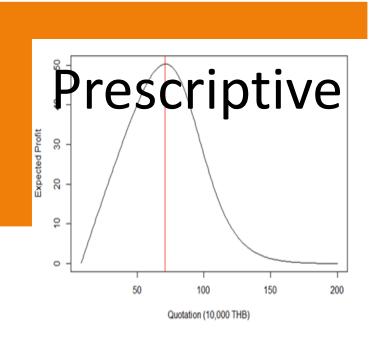
- Cost = 78,291 THB (installation & maintenance)
- Logistic regression

#### Output

- Optimal bid price = 710,000 THB.
- Probability of winning = 1-0.2040 = 0.7960.
- Optimal expected profit = 502,855 THB.


```
profit <- function(x) {
  cost <- 7.8291 #78,291 THB
  probL <- predict(mylogit3, data.frame(Quotation10K=x), type="response")
  myprofit <- (1-probL)*(x-cost)
  return(myprofit)
}</pre>
```





DIFFICULTY

**Gartner** 

## Pricing Analytics







#### References

- Amaruchkul, K. (2018). *Reveneue Optimization Models*. Bangkok: National Institute of Development Adminstration Press.
- Ingold, A., McMahon-Beattie, U., & Yeoman, I. (2000). Yield Management: Strategies for the Service Industries. London: Cengage Learning.
- International Air Transport Association. (2012). Airline Revenue Management. Montreal, International Aviation
- Training Program.
- Phillips, R. (2005). *Pricing and Revenue Optimization*. Stanford, CA: Stanford University Press.
- Talluri, K., & van Ryzin, G. J. (2004). *The Theory and Practice of Revenue Management*. Boston, MA: Kluwer Academic Publishers.
- Yeoman, I., & McMahon-Beattie, U. (2011). Revenue Management: A Practical Pricing Perspective. New York: Palgrave Macmillan.
- Yeoman, I., & McMahon-Beattie, U. (2004). Revenue Management and Pricing: Case Studies and Applications. London: Thomson Learning.



🛼 จัดสงฟรีทั่วประเทศ เมื่อชื้อครบ 600 บาทชิ้นไป 🕓 ติดต่อสอบถาม 0 2826 8753 - 4

Change Language >

Google: Select Language

ซีเอ็ดบุ๊คเซ็นเตอร์ 🗸









สินค้าและบริการ 🗸

ค้นหา ทั้งหมด

ค้นหา

เข้าสู่ระบบ



0 ชิ้น

#### คู่มือเรียน - สอบ 🗸

อนุบาล ประถม

มัธยม

อาชีวศึกษา

#### อดมศึกษา

คู่มือสอบเข้า

คู่มือสอบเข้า - บรรจุ

คู่มือสอบเทียบ

เลื่อนขั้น

หนังสืออ่านนอกเวลา

#### สาขาที่มีจำหน่าย : Revenue Optimization Models

หนังสือ คู่มือเรียน - สอบ อุดมศึกษา

#### สาขาที่มีจำหน่าย



#### **Revenue Optimization Models**

Addressing an emerging course in Revenue Management, this textbook covers the basic quantitative models in revenue management (RM) and price optimization.

ผู้เขียน Kannapha Amaruchkul

550.00 บาท

หนังสือ 522.50 บาท



ซื้อที่คณะสถิติประยุกต์ ลดเหลือ 440 บาท (จำนวนจำกัด)

#### **Revenue Optimization Models** Kannapha Amuruchkul



National Institute of Development Administration (NIDA) Bangkok, Thailand

## Kannapha

# Revenue

#### Revenue **Optimization Models**

National Institute of Development Administration

Kannapha Amuruchkul Graduate School of **Applied Statistics** 

